

Exploration Beyond Expectation

Geo-Carte

Radar Technology Pvt. Ltd.

Unknown distribution network of underground pipeline in India

Damage of pre-existing underground utilities during laying of new ones

Leakage in buried water and sewage pipelines leading to contamination

Degradation of road network due to poor drainage condition

Reduced efficiency of ballast cleaning machine due to buried unwanted scrap

Unexplored locations for Archaeological excavations

Objective

To introduce a non-destructive subsurface exploration method, which leads to

Introduction to GPR

Ground Penetrating Radar (GPR)

Non Destructive subsurface exploration technique

Works on the principle of Electromagnetic waves

Waves are reflected from the boundary of dielectric contrast

Hyperbolic reflections across the target

Depth of penetration ranges from few cm to 12-14 m

Trade off between frequency and resolution

Weak signals in case of wet clayey soil

Current Limitation

Fails to provide satisfactory result in case of weak signals

Low dielectric contrast, wet clayey soil, conductive medium

Our Developed Technology

Advanced T-F analysis & better interpretation for weak signal data

Enhanced Resolution of subsurface profile

Satisfactory results even in high salt content & wet clayey soils

Benefits

Prevent underground utility damage during trenching/tunnelling

Map unrecorded network underground utility

Leak detection in underground pipelines

Roads inspection to avoid accidents due to poor construction practices

Mapping underneath sinkholes leading to huge road accidents

Locate under ballast obstructions leading to increased BCM efficiency

Locate potential locations for excavation in archaeological sites

Competitive Edge

Reliable and efficient

Satisfactory results despite high salt content & wet clayey soils

Enhanced image resolution over conventional methods

Advanced analysis and better interpretation

Effective data and reliable outputs in all site conditions

Customised services and products for specific purpose

Applications

Feedback from Our Customers

alives visce arbeiter referen **RIZWAN AHMAD** lional Engineer (S)

वरणांत विश्वाली डॉनिंगम, मुंबई - 400 001. Office of the Divisional Railway Manager(Works). Chhahapeli Shiveji Terminus, Mumbel-400 001. P&T (O) 022 2290729 (FF); 55302 Mobile : 6826179204

मंडल मेन प्रसंधक (कार्य) का कार्यालय

91 HUR/Bel. No. = BB.W.APP.GENI.

Redw/Data 22.02.2017

Dear Silky,

The offensive process of the date of the second sec

Second 1 and 100 mere and the train to care of new streams in more than only being a ready bound it

The extreme base provided to reductional solar periods

The summer and proceeding and part and the day is the best parts

We specialize an in control of Calculars

Dear Mr. Sully.

I am writing this letter as a note of appreciation for your excellent solution to the prevailing problem of poor efficiency of halfast cleaning machine during maintenance work to Indian Railways. Your developed mechanical system was efficient for the movement of machine over the railway track. We had tried to detect these under ballast obstructions nondestructively by other companies using other means, but they failed to fulfil the purpose. I am really pleased with your knowledge and expertise in GPR.

Great service makes your customers feel that you care about developing a long-term relationship that means more than just making a sale.

I would love to recommend your company to anyone who needs underground scanning services in the fature. Keep up the good work.

Team and Advisors

Silky Agrawal Founder & CEO

John Samson

Darpan Agrawal

Advisors

Prof. Amit Prashant Professor, IIT Gandhinagar

Prof. S. K. Jain Director, IIT Gandhinagar

Incubated at

IIT Gandhinagar Incubation Centre

Reach us @

- <u>info@geocarte.in</u>
- www.geocarte.in

Follow us @

GeoCarte's Few Success Stories

UTILITY MAPPING OVER CONCRETE SURFACE

AT IIT VGEC CAMPUS

Data was collected over and around the manhole in an area of 3m X 3m in a grid

Grid spacing of 0.5m

Using 400 MHz antenna

Output Results

Captured the clear features of pipes crossing at 0.5 m depth was after post-processing

UTILITY MAPPING

AT DAHEJ

Why survey was required?

Encountered unknown pipe during tunneling

To avoid encounter of other such pipe in further execution

To design new layout of the pipe preventing damage of pre-existing lines

Survey Specifics

Total area scanned is around 33,00 m², 3 road crossings

3D data collection

Antenna used 200 MHz

Grid spacing varying from 2 to 3 m

Maximum accessible area was covered in rectangular fashion

Data Collection

3D subsurface view

2D subsurface profiles

Output Result

Site-1

UTILITY MAPPING

AT DAHEJ SEZ 2

Why survey was required?

To ensure a clear stretch of 30 m width along longitudinal direction

To avoid encounter of other across pipes during installing new utility

To design new layout of the pipe preventing damage of pre-existing lines

Details of Investigated Area

Surrounded by petro-chemical industries

Challenging for data collection

2D subsurface profiles

Total area scanned is around 24000 m²

2D data collection

Antenna used 200 MHz

Data was collected along the accessible transects

Detected 5 utilities along the road and 5 utilities across the road

Output Result

VOID DETECTION UNDER ROAD

AT DAHEJ

Survey Specifics

Total area scanned is around an Acre

3D data collection

Antenna used 400 MHz to cover depth of 2.5 to 3m

Grid spacing of 3 m

Maximum accessible area was covered in rectangular fashion

2D & 3D subsurface view

RAILWAY BALLAST INVESTIGATION

AT GANDHINAGAR AND CST MUMBAI

To explore the applicability of GPR for railway ballast investigation

To map all the possible obstructions in ballast, e.g. cables, rail pieces, etc.

To improve the efficiency of the Ballast Cleaning Machine (BCM)

Survey Specifics

3 Stretches of length 100m was considered for the survey

Buried 9 targets at approximate depth of 0.2 to 0.3 m

Customized cart was developed for smooth movement over the railway track

Used 900 MHz antennae for less penetration with higher resolution

Three profiles were collected to cover the width of the track

Improved resolution of the targets with advanced analysis

Output Results

8 out of 9 buried targets could be located by conventional method

3 extra targets were located by advanced analysis method

Total 12 targets were detected

Resolution is enhanced by advanced analysis

ARCHAEOLOGICAL INVESTIGATION

AT KADAPA

Details of Investigated Area

Output Results

Observed 4 target locations and a linear feature representing wall kind reflections

ARCHAEOLOGICAL INVESTIGATION

AT DHOLAVIRA

Details of Investigated Area

Situated at Khadirbet in Bhachau Taluka of Kutch District, in the state of Gujarat.

Total area covered is 12276 m²

Maximum accessible area was covered in rectangular fashion

Data was collected using 400 and 200 MHz antenna

3D Data collection in grid

Output Results

Conventional Profile

Improved Profile

3-D view at different depths

Output Results

3-D subsurface view of areas

Depth slice at a particular depth

Observed features are marked

Time Demand

Average time requirement for the survey over either an area of 1 Acre or 5 km length of two lane road

